Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • Set Creation & Membership
  • Define a Set
  • Add Members
  • Remove Members
  • Membership
  • Size
  • Export as List
  • Set Relations
  • Union (A ∪ B)
  • Intersection (A ∩ B)
  • Complement (Aꟲ)
  • Symmetric Difference (A Δ B)
  • Set Operations
  • Logical AND (∧)
  • Logical OR (∨)
  • Operate with Function
  • Accumulate with Function
Edit on GitHub
  1. Hoon

Sets

PreviousSerializationNextStandard Library

Last updated 1 day ago

While the developer documentation on $sets and the +in core is comprehensive, it is organized alphabetically which can make it difficult to see what's going on with set relations. This article will describe set identities and relations through the Hoon standard library.

A $set is a tree with a particular internal order based on the hash of the value. This tends to balance the values and make lookup and access more efficient over large sets.

Set Creation & Membership

Define a Set

++silt produces a $set from a $list.

> `(set @tas)`(silt `(list @tas)`~[%a %b %c %a])
{%b %a %c}

Add Members

++put:in adds an element x to a set A.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  `(set @tas)`(~(put in a) %d)
{%b %d %a %c}

++gas:in adds each element x, y, z of a list to a set A.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  =/  b  `(list @tas)`~[%d %e %f]
  `(set @tas)`(~(gas in a) b)
{%e %b %d %f %a %c}

Remove Members

++del:in removes an element x from a set A.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c %d])
  `(set @tas)`(~(del in a) %d)
{%b %a %c}

Membership

++has:in checks if an element x is in a set A.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  (~(has in a) %a)
%.y

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  (~(has in a) %d)
%.n

Size

++wyt:in produces the number of elements in A as an atom (width).

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  ~(wyt in a)
3

Export as List

++tap:in produces the elements of set A as a $list. The order is the same as a depth-first search of the $set's representation as a $tree, reversed.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  ~(tap in a)
~[%c %a %b]

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
    =/  b  `(list @tas)`~[%d %e %f]
    ~(tap in `(set @tas)`(~(gas in a) b))
~[%c %a %f %d %b %e]

Set Relations

First we consider the elementary operations between two sets.

Union (A ∪ B)

A∪B≡{x:x∈A or x∈B}A \cup B \equiv \{ x : x \in A \text{ or } x \in B \}A∪B≡{x:x∈A or x∈B}

++uni:in produces a set containing all values from A or B. The types of A and B must match.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  =/  b  `(set @tas)`(silt `(list @tas)`~[%c %d %e])
  `(set @tas)`(~(uni in a) b)
{%e %b %d %a %c}

Intersection (A ∩ B)

A∩B≡{x:x∈A and x∈B}A \cap B \equiv \{ x : x \in A \text{ and } x \in B \}A∩B≡{x:x∈A and x∈B}

++int:in produces a set containing all values from A and B. The types of A and B must match.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  =/  b  `(set @tas)`(silt `(list @tas)`~[%c %d %e])
  `(set @tas)`(~(int in a) b)
{%c}

If two sets are disjoint, then their intersection is ∅.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  =/  b  `(set @tas)`(silt `(list @tas)`~[%d %e %f])
  `(set @tas)`(~(int in a) b)
{}

Complement (Aꟲ)

AC=X\A≡x∈X;x∉AA^{\textrm{C}} = X \backslash A \equiv {x \in X; x \notin A}AC=X\A≡x∈X;x∈/A

The complement of a set A, Aꟲ, may be found using ++dif (difference).

For instance, if X = {a, b, c, d} and A = {c, d}, then Aꟲ = {a, b}.

> =/  x  `(set @tas)`(silt `(list @tas)`~[%a %b %c %d])
  =/  a  `(set @tas)`(silt `(list @tas)`~[%c %d])
  `(set @tas)`(~(dif in x) a)
{%b %a}

Symmetric Difference (A Δ B)

A△B≡{x:x belongs to exactly one of A and B}A \bigtriangleup B \equiv \{x : x \text{ belongs to exactly one of } A \text{ and } B\}A△B≡{x:x belongs to exactly one of A and B}

The symmetric difference of two sets A and B consists of those elements in exactly one of the sets. Use ++uni:in with ++dif:in to identify this set.

For instance, if A = {a, b, c} and B = {c, d, e}, then A Δ B = {a, b, d, e}.

=/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
=/  b  `(set @tas)`(silt `(list @tas)`~[%c %d %e])
=/  lhs  (~(dif in a) b)
=/  rhs  (~(dif in b) a)
`(set @tas)`(~(uni in lhs) rhs)

Set Operations

Logical AND (∧)

++all:in computes the logical AND on every element in set A against a logical function f, producing a flag.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  (~(all in a) (curr gth 32))
%.y

Logical OR (∨)

++any:in computes the logical OR on every element in set A against a logical function f, producing a flag.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  (~(any in a) (curr gth 32))
%.y

Operate with Function

++run:in applies a function f to every member of set A.

> =/  a  `(set @tas)`(silt `(list @tas)`~[%a %b %c])
  (~(run in a) @ud)
{98 97 99}

Accumulate with Function

++rep:in applies a binary function f to every member of set A and accumulates the result.

=/  a  `(set @ud)`(silt `(list @ud)`~[1 2 3 4 5])
    (~(rep in a) mul)
b=120

While there are a few other set functions in +in, they are largely concerned with internal operations such as consistency checking.