Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • ~> "siggar"
  • ~| "sigbar"
  • ~$ "sigbuc"
  • ~_ "sigcab"
  • ~% "sigcen"
  • ~< "siggal"
  • ~+ "siglus"
  • ~/ "sigfas"
  • ~& "sigpam"
  • ~= "sigtis"
  • ~? "sigwut"
  • ~! "sigzap"
Edit on GitHub
  1. Hoon
  2. Runes

~ sig · Hints

Runes that use Nock 11 to pass non-semantic info to the interpreter. A mnemonic to remember what sig runes are for is "we're signaling some information to the interpreter".

~> "siggar"

Raw hint, applied to computation.

Syntax

Two arguments, fixed.

~>  p
q
~>(p q)

None

AST

[%sggr p=$@(term [p=term q=hoon]) q=hoon]

Expands to

q.

Semantics

p may either be a single %term or a pair of [term hoon], the latter of which may optionally be be written %foo.some-hoon. p will be passed to the interpreter and q will be evaluated and its result produced like normal.

Discussion

Hoon has no way of telling what hints are used and what aren't. Hints are all conventions at the interpreter level.

Examples

> ~>(%a 42)
42

Running the compiler:

> (make '~>(%a 42)')
[%11 p=97 q=[%1 p=42]]

> (make '~>(%a.+(2) 42)')
[%11 p=[p=97 q=[%4 p=[%1 p=2]]] q=[%1 p=42]]

~| "sigbar"

Tracing printf.

Syntax

Two arguments, fixed.

~|  p
q
~|(p q)

None

AST

[%sgbr p=hoon q=hoon]

Expands to

q.

Convention

Prettyprints p in stack trace if q crashes.

Examples

> ~|('sample error message' !!)
'sample error message'
dojo: hoon expression failed

> ~|  'sample error message'
  !!
'sample error message'
dojo: hoon expression failed

~$ "sigbuc"

Profiling hit counter.

Syntax

Two arguments, fixed.

~&  p
q
~&(p q)

None

AST

[%sgbc p=term q=hoon]

Expands to

q.

Discussion

If profiling is on, adds 1 to the hit counter p, which is a term like %foo. Profiling is enabled by passing the -P flag to the urbit binary. Profiling results are saved in /path/to/pier/.urb/put/profile/~some.date.txt.

Examples

> ~$(%foo 3)
3

Assuming we have the binary running with the -P flag, if we do this:

> =z |=  a=@
     ?:  =(a 0)
       a
     ~$  %my-hit-counter
     $(a (dec a))

> (z 42)
0

...then look in /path/to/pier/.urb/put/profile/~some.date.txt, we'll see this line near the top of the file:

my-hit-counter: 42

~_ "sigcab"

User-formatted tracing printf.

Syntax

Two arguments, fixed.

~_  p
q
~_(p q)

None

AST

[%sgcb p=hoon q=hoon]

Expands to

q.

Convention

Shows p in stacktrace if q crashes.

Discussion

p must produce a tank (pretty-print source).

Examples

> ~_([%leaf "sample error message"] !!)
sample error message
dojo: hoon expression failed

> ~_  [%leaf "sample error message"]
  !!
sample error message
dojo: hoon expression failed

~% "sigcen"

Jet registration.

Syntax

Four arguments. Two fixed arguments, then a third which may be ~ if empty or else a variable number of pairs sandwiched between two ==s, then a fourth fixed argument.

~%  p  q
  ==
    r1a  r1b
    r2a  r2b
    rna  rnb
  ==
s

None

None

AST

[%sgcn p=chum q=hoon r=tyre s=hoon]

Expands to

s.

Convention

Register a core with name p, with parent at leg q, exporting the named formulas r, constructed by s.

Discussion

~% is for registering cores. A registered core declares its formal identity to the interpreter, which may or may not be able to recognize and/or accelerate it.

Registered cores are organized in a containment hierarchy. The parent core is at any leg within the child core. When we register a core, we state the leg to its parent, in the form of wing q. We assume the parent is already registered -- as it must be, if (a) we registered it on creation, (b) the child was created by an arm defined on the parent.

(Cores are actually managed by their formula/battery. Any function call will create a new core with a new sample, but batteries are constant. But it is not sufficient to match the battery -- matching the semantics constrains the payload as well, since the semantics of a battery may depend on any parent core and/or payload constant.)

The purpose of registration is always performance-related. It may involve (a) a special-purpose optimizer or "jet", written for a specific core and checked with a Merkle hash; (b) a general-purpose hotspot optimizer or "JIT"; or (c) merely a hotspot declaration for profiling.

As always with hints, the programmer has no idea which of (a), (b), and (c) will be applied. Use ~% indiscriminately on all hotspots, bottlenecks, etc, real or suspected.

The list r is a way for the Hoon programmer to help jet implementors with named Nock formulas that act on the core. In complex systems, jet implementations are often partial and want to call back into userspace.

The child core contains the parent, of course. When we register a core, we state the leg to its parent, in the form of wing q. We assume that the parent -- any core within the payload -- is already registered.

p is the name of this core within its parent; q is the leg

Registers a jet in core s so that it can be called when that code is run.

Examples

Here's the beginning of the AES core in zuse.hoon:

++  aes    !.
  ~%  %aes  ..part  ~
  |%
  ++  ahem
    |=  [nnk=@ nnb=@ nnr=@]
    =>
      =+  =>  [gr=(ga 8 0x11b 3) few==>(fe .(a 5))]
          [pro=pro.gr dif=dif.gr pow=pow.gr ror=ror.few]
      =>  |%
  ..........

Here we label the entire ++aes core for optimization.


~< "siggal"

Raw hint, applied to product.

Syntax

Two arguments, fixed.

~<  p
q
~<(p q)

None

p may either be a a term or a pair of [term hoon]. If it's the latter, p may optionally be written as %foo.some-hoon.

AST

[%sggl p=$@(term [p=term q=hoon]) q=hoon]

Expands to

q.

Discussion

~< is only used for jet hints (~/ and ~%) at the moment; we are not telling the interpreter something about the computation we're about to perform, but rather about its product.

Examples

> (make '~<(%a 42)')
[%7 p=[%1 p=42] q=[%11 p=97 q=[%0 p=1]]]
> (make '~<(%a.+(.) 42)')
[%7 p=[%1 p=42] q=[%11 p=[p=97 q=[%4 p=[%0 p=1]]] q=[%0 p=1]]]

~+ "siglus"

Cache a computation.

Syntax

One argument, fixed.

Tall form
Wide form
Irregular form

~+ p

~+(p)

None

AST

[%sgls p=hoon]

Expands to

p.

Convention

Caches the formula and subject of p in a local cache (generally transient in the current event).

Examples

This may pause for a second:

> %.(25 |=(a=@ ?:((lth a 2) 1 (add $(a (sub a 2)) $(a (dec a))))))
121.393

This may make you want to press ctrl-c:

> %.(30 |=(a=@ ?:((lth a 2) 1 (add $(a (sub a 2)) $(a (dec a))))))
1.346.269

This should work fine:

> %.(100 |=(a=@ ~+(?:((lth a 2) 1 (add $(a (sub a 2)) $(a (dec a)))))))
573.147.844.013.817.084.101

~/ "sigfas"

Jet registration for gate with registered context.

Syntax

Two arguments, fixed.

~/  p
q
~/(p q)

None

AST

[%sgfs p=term q=hoon]

Expands to

~%(p +7 ~ q)

Examples

From the kernel:

++  add
  ~/  %add
  |=  [a=@ b=@]
  ^-  @
  ?:  =(0 a)  b
  $(a (dec a), b +(b))

~& "sigpam"

Debugging printf.

Syntax

Two arguments, fixed.

~&  p
q
~&(p q)

None

AST

[%sgpm p=hoon q=hoon]

Expands to

q.

Product

Pretty-prints p on the console before computing q.

Discussion

This rune has no semantic effect beyond the Hoon expression q. It's used solely to create a side-effect: printing the value of p to the console.

It's most useful for debugging programs.

A logging level can be specified by including > markers, i.e. >, >>,>>>.

Examples

> ~&('halp' ~)
'halp'
~

> ~&  'halp'
  ~
'halp'
~

> ~&  >>  'halp'
  ~
>>  'halp'
~

~= "sigtis"

Detect duplicate.

Syntax

Two arguments, fixed.

~=  p
q
~=(p q)

None

AST

[%sgts p=hoon q=hoon]

Expands to

q.

Convention

If p equals q, produce p instead of q.

Discussion

Duplicate nouns are especially bad news in Hoon, because comparing them takes O(n) time. Use ~= to avoid this inefficiency.

Examples

This code traverses a tree and replaces all instances of 32 with320:

> =foo |=  a=(tree)
       ?~(a ~ ~=(a [?:(=(n.a 32) 320 n.a) $(a l.a) $(a r.a)]))

> (foo 32 ~ ~)
[320 ~ ~]

Without ~=, it would build a copy of a completely unchanged tree. Sad!


~? "sigwut"

Conditional debug printf.

Syntax

Three arguments, fixed.

~?  p
  q
r
~?(p q r)

None

AST

[%sgwt p=hoon q=hoon r=hoon]

Expands to

r.

Convention

If p is true, prettyprints q on the console before computing r.

Examples

> ~?((gth 1 2) 'oops' ~)
~

> ~?((gth 1 0) 'oops' ~)
'oops'
~

> ~?  (gth 1 2)
    'oops'
  ~
~

> ~?  (gth 1 0)
    'oops'
  ~
'oops'
~

~! "sigzap"

Print type on compilation fail.

Syntax

Two arguments, fixed.

~!  p
q
~!(p q)

None

AST

[%sgzp p=hoon q=hoon]

Expands to

q.

Convention

If compilation of q fails, prints the type of p in the trace.

Examples

> a
! -find.a

> ~!('foo' a)
! @t
! find.a

> ~!  'foo'
  a
! @t
! find.a
Previous; mic · MakeNext= tis · Subject

Last updated 1 day ago