Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • Loobean Logic
  • Noun Equality
  • Making Choices
  • Logical Operators
  • Exercise: Design an XOR Function
  • Exercise: Design a NAND Function
  • Exercise: Design a NOR Function
  • Exercise: Implement a Piecewise Boxcar Function
Edit on GitHub
  1. Build on Urbit
  2. Hoon School

13. Conditional Logic

Previous12. Type CheckingNext14. Subject-Oriented Programming

Last updated 1 day ago

Although you've been using various of the ? wut runes for a while now, let's wrap up some loose ends. This module will cover the nature of loobean logic and the rest of the ? wut runes.

Loobean Logic

Throughout Hoon School, you have been using %.y and %.n, often implicitly, every time you have asked a question like ?: =(5 4). The =() expression returns a loobean, a member of the type union ?(%.y %.n). (There is a proper aura @f but unfortunately it can't be used outside of the compiler.) These can also be written as & (%.y, true) and | (%.n, false), which is common in older code but should be avoided for clarity in your own compositions.

What are the actual values of these, sans formatting?

> `@`%.y
0

> `@`%.n
1

Pretty much all conditional operators rely on loobeans, although it is very uncommon for you to need to unpack them.

Noun Equality

The most fundamental comparison in Hoon is provided by .= dottis, a test for equality of two nouns using Nock 5. This is almost always used in its irregular form of = tis.

> =(0 0)
%.y

> =('a' 'b')
%.n

Since Nock is unaware of the Hoon metadata type system, only bare atoms in the nouns are compared. If you need to compare include type information, create vases with !> zapgar.

> =('a' 97)
%.y

> =(!>('a') !>(97))
%.n

Making Choices

You are familiar in everyday life with making choices on the basis of a decision expression. For instance, you can compare two prices for similar products and select the cheaper one for purchase.

Essentially, we have to be able to decide whether or not some value or expression evaluates as %.y true (in which case we will do one thing) or %.n false (in which case we do another). Some basic expressions are mathematical, but we also check for existence, for equality of two values, etc.

  • +gth (greater than >)

  • +lth (less than <)

  • +gte (greater than or equal to ≥)

  • +lte (less than or equal to ≤)

  • .= dottis, irregularly =() (check for equality)

The key conditional decision-making rune is ?: wutcol, which lets you branch between an expression-if-true and an "expression-if-false". ?. wutdot inverts the order of ?:. Good Hoon style prescribes that the heavier branch of a logical expression should be lower in the file.

There are also two long-form decision-making runes, which we will call switch statements by analogy with languages like C.

?- wuthep lets you choose between several possibilities, as with a type union. Every case must be handled and no case can be unreachable.

Since @tas terms are constants first, and not @tas unless marked as such, ?- wuthep switches over term unions can make it look like the expression is branching on the value. It's actually branching on the type. These are almost exclusively used with term type unions.

|=  p=?(%1 %2 %3)
?-  p
  %1  1
  %2  2
  %3  3
==

?+ wutlus is similar to ?- but allows a default value in case no branch is taken. Otherwise these are similar to ?- wuthep switch statements.

|=  p=?(%0 %1 %2 %3 %4)
?+  p  0
  %1  1
  %2  2
  %3  3
==

Logical Operators

Mathematical logic allows the collocation of propositions to determine other propositions. In computer science, we use this functionality to determine which part of an expression is evaluated. We can combine logical statements pairwise:

?& wutpam, irregularly &(), is a logical AND (i.e. p ∧ q) over loobean values, e.g. both terms must be true.

AND

%.y

%.n

%.y

%.y

%.n

%.n

%.n

%.n

> =/  a  5
  &((gth a 4) (lth a 7))
%.y

?| wutbar, irregularly |(), is a logical OR (i.e. p ∨ q) over loobean values, e.g. either term may be true.

OR

%.y

%.n

%.y

%.y

%.y

%.n

%.y

%.n

\

> =/  a  5
  |((gth a 4) (lth a 7))
%.y

?! wutzap, irregularly !, is a logical NOT (i.e. ¬p). Sometimes it can be difficult to parse code including ! because it operates without parentheses.

NOT

%.y

%.n

%.n

%.y

\

> !%.y
%.n

> !%.n
%.y

From these primitive operators, you can build other logical statements at need.

Exercise: Design an XOR Function

The logical operation XOR (i.e. p⊕q ; exclusive disjunction) yields true if one but not both operands are true. XOR can be calculated by (p ∧ ¬q) ∨ (¬p ∧ q).

XOR

%.y

%.n

%.y

%.n

%.y

%.n

%.y

%.n

  • Implement XOR as a gate in Hoon.

|=  [p=?(%.y %.n) q=?(%.y %.n)]
^-  ?(%.y %.n)
|(&(p !q) &(!p q))

Exercise: Design a NAND Function

The logical operation NAND (i.e. p ↑ q) produces false if both operands are true. NAND can be calculated by ¬(p ∧ q).

NAND

%.y

%.n

%.y

%.n

%.y

%.n

%.y

%.y

  • Implement NAND as a gate in Hoon.

Exercise: Design a NOR Function

The logical operation NOR (i.e. p ↓ q) produces true if both operands are false. NOR can be calculated by ¬(p ∨ q).

NOR

%.y

%.n

%.y

%.n

%.n

%.n

%.n

%.y

  • Implement NAND as a gate in Hoon.

Exercise: Implement a Piecewise Boxcar Function

The boxcar function is a piecewise mathematical function which is equal to zero for inputs less than zero and one for inputs greater than or equal to zero. We implemented the similar Heaviside function previously using the ?: wutcol rune.

Compose a gate which implements the boxcar function,

boxcar(x):=(1,10≤x<200,otherwise)\text{boxcar}(x) := \left( \begin{matrix} 1, & 10 \leq x < 20 \\\\ 0, & \text{otherwise} \\\\ \end{matrix} \right)boxcar(x):=​1,0,​10≤x<20otherwise​​

Use Hoon logical operators to compress the logic into a single statement using at least one AND or OR operation.