Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • +cap
  • +mas
  • +peg
Edit on GitHub
  1. Hoon
  2. Standard Library

1b: Tree Addressing

+cap

Tree head

Tests whether the tree address a is in the head or the tail of a noun. Produces the constant atom %2 if it is within the head (subtree +2), or the constant atom %3 if it is within the tail (subtree +3).

Specifically, ++cap just checks whether the second-to-most significant bit of the input is 1 or 0.

Accepts

a is an atom.

Produces

A constant atom.

Source

++  cap
  ~/  %cap
  |=  a=@
  ^-  ?(%2 %3)
  ?-  a
    %2        %2
    %3        %3
    ?(%0 %1)  !!
    *         $(a (div a 2))
  ==

Examples

> (cap 4)
%2
> (cap 6)
%3
> (cap (add 10 9))
%2
> (cap 1)    ::address '1' is in neither the head nor the tail
! exit
> (cap 0x40))
%2
> `@`0x40
64
> (cap 'a')
%3
> `@`'a'
97

+mas

Address within head/tail

Computes the tree address of atom a within either the head (+2) or tail (+3) of a noun.

Specifically, ++mas just replaces the two most significant bits of the input with 01.

Accepts

a is an atom.

Produces

An atom.

Source

++  mas
  ~/  %mas
  |=  a=@
  ^-  @
  ?-  a
    ?(%2 %3)  1
    ?(%0 %1)  !!
    *         (add (mod a 2) (mul $(a (div a 2)) 2))
  ==

Examples

> (mas 3)
1
> (mas 4)
2
> (mas 5)
3
> (cap 5)    ::`(cap a)` computes whether address `a` is in the head or the tail
%2
> (mas 7)
3
> (cap 7)
%3
> (mas 11)
7
> (mas (mas 11))
3
> (cap (mas 6))
%3
> (mas 0)    ::address `0` is in neither the head nor the tail
! exit
> (mas 1)    ::address `1` is in neither the head nor the tail
! exit

Discussion

            1
          /   \
         /     \
        2       3              <--here are the head (`+2`) and the tail (`+3`)
       / \      /\
      4   5    6  7
     /\   /\  /\  /\
     (continues...)

Running (mas 7) in the Dojo will return 3, because address +3 is what +7 now occupies. The tree below helps illustrate the relationship. With parentheses are a values (if a is in subtree +3), and without parentheses are the values returned with (mas a).

            1(3)                       ::new/(old) addresses
           /    \
          2       3
         (6)     (7)
        / \       /\
       /   \     /  \
      4     5   6    7
     (12) (13) (14) (15)
    / \    / \ / \   / \
       (continues...)

Notice how the old values in the head (subtree +2) were not illustrated in this case, because +7 is within the tail (subtree +3).


+peg

Address within address

Computes the absolute address of b, a relative address within the subtreea.

Specifically, ++peg just concatenates the bits of the input, excluding the most significant bit of either, and then sets the next most significant bit after the concatenation to 1.

Accepts

a is an atom.

b is an atom.

Produces

An atom.

Source

++  peg
  ~/  %peg
  |=  [a=@ b=@]
  ?<  =(0 a)
  ^-  @
  ?-  b
    %1  a
    %2  (mul a 2)
    %3  +((mul a 2))
    *   (add (mod b 2) (mul $(b (div b 2)) 2))
  ==

Examples

> (peg 4 1)
4
> (peg 1 4)
4
> (peg 4 2)
8
> (peg 4 8)
32
> (peg 4 (peg 4 2))
32
> (peg 8 45)
269
> (cap (peg 4 2))    ::`(cap a)` computes whether address `a` is in the head or the tail
%2

Discussion

In other words, the subtree at address a is treated as a tree in its own right (starting with root +1, head +2, and tail +3). Relative address b is found with respect to a, and then its absolute address, within the greater tree, is returned.

Running (peg 3 4) in the Dojo, for example, will return 12. Looking at a tree diagram makes it easy to see why.

                 1
              /     \
             /       \
            /         \
           2           3       <- here is the subtree `+3`. The subtree address is `a` in `(peg a b)`
          / \         / \
         /   \       /   \
        4     5     6     7
       / \   / \   / \   / \
      8  9  10 11 12 13 14  15
     /\  /\ /\ /\ /\ /\ /\  /\
         (continues...)

When we consider subtree at address +3 by itself, it has relative addresses that are structured in the same way as its parent tree's absolute addresses. The absolute addresses are given in parentheses in the diagram below. Notice how relative address +4 is at the same position as absolute address +12.

            1(3)                        ::new/(old) addresses
           /    \
          2       3
         (6)     (7)
        / \       /\
       /   \     /  \
      4     5   6    7
    (12) (13) (14)  (15)
    / \    / \ / \   / \
       (continues...)

Previous1a: Basic ArithmeticNext1c: Molds and Mold-Builders

Last updated 1 day ago