Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • +aor
  • +dor
  • +gor
  • +mor
Edit on GitHub
  1. Hoon
  2. Standard Library

2f: Noun Ordering

+aor

Alphabetical order

Computes whether a and b are in alphabetical order, producing a flag. Orders atoms before cells, and atoms in ascending LSB order.

Accepts

a is a noun.

b is a noun.

Produces

A flag.

Source

++  aor
  ~/  %aor
  |=  [a=* b=*]
  ^-  ?
  ?:  =(a b)  &
  ?.  ?=(@ a)
    ?:  ?=(@ b)  |
    ?:  =(-.a -.b)
      $(a +.a, b +.b)
    $(a -.a, b -.b)
  ?.  ?=(@ b)  &
  |-
  =+  [c=(end 3 a) d=(end 3 b)]
  ?:  =(c d)
    $(a (rsh 3 a), b (rsh 3 b))
  (lth c d)

Examples

> (aor 'a' 'b')
%.y
> (aor 'b' 'a')
%.n
> (aor 'a' 'a')
%.y

> (aor 1 2)
%.y
> (aor 2 1)
%.n

> (aor ['a' ~] 'b')
%.n
> (aor 'b' ['a' ~])
%.y

> (aor ['a' ~] ['b' ~])
%.y
> (aor ['b' ~] ['a' ~])
%.n

> (aor "abca" "abcz")
%.y
> (aor "abcz" "abca")
%.n

> (aor 0b1011 0b1010)
%.n
> (aor 0b1010 0b1011)
%.y

> (aor [1 2] [2 1])
%.y
> (aor [2 1] [1 2])
%.n

Note the possible differences with +dor due to comparing one byte at a time:

> (aor 0b1001.0000.0000 0b1000.1000.0000)
%.y
> (dor 0b1001.0000.0000 0b1000.1000.0000)
%.n

Discussion

This is different than +dor in that it compares atoms one byte at a time, while +dor compares whole atoms at once. Note that because it simply compares bytes, it doesn't account for multi-byte UTF-8 characters and the like.


+dor

Depth order

Computes whether a and b are in ascending tree depth order, producing a flag. Orders atoms before cells, and atoms in ascending numerical order.

Accepts

a is a noun.

b is a noun.

Produces

A flag.

Source

++  dor
  ~/  %dor
  |=  [a=* b=*]
  ^-  ?
  ?:  =(a b)  &
  ?.  ?=(@ a)
    ?:  ?=(@ b)  |
    ?:  =(-.a -.b)
      $(a +.a, b +.b)
    $(a -.a, b -.b)
  ?.  ?=(@ b)  &
  (lth a b)

Examples

> (dor 1 2)
%.y

> (dor 2 1)
%.n

> (dor ~[1 2 3] ~[1 2 4])
%.y

> (dor ~[1 2 4] ~[1 2 3])
%.n

> (dor `(list @)`~[99 100 10.000] ~[99 101 10.000])
%.y

> (dor ~[99 101 10.999] `(list @)`~[99 100 10.000])
%.n

Note the possible difference with +aor due to comparing whole atoms rather than one byte at a time:

> (aor 0b1001.0000.0000 0b1000.1000.0000)
%.y
> (dor 0b1001.0000.0000 0b1000.1000.0000)
%.n

Discussion

If a and b are both atoms, dor is equivalent to lte. If they're cells, dor recurses on the heads, and then if the heads are the same it checks the tails.

If one sample is a cell and the other is an atom, the cell sample is treated as "greater."


+gor

Mug order

Computes whether of (mug a) and (mug b) are in ascending numeric order, producing a flag. If the mug hashes are equal, a and b are compared by dor instead.

mug is the the 31-bit nonzero FNV-1a hash algorithm.

Accepts

a is a noun.

b is a noun.

Produces

A flag.

Source

++  gor
  ~/  %gor
  |=  [a=* b=*]
  ^-  ?
  =+  [c=(mug a) d=(mug b)]
  ?:  =(c d)
    (dor a b)
  (lth c d)

Examples

> (gor 'd' 'c')
%.y

> 'd'
'd'
> 'c'
'c'

> `@ud`'d'
100
> `@ud`'c'
99

> (mug 'd')
1.628.185.714
> (mug 'c')
1.712.073.811

> (gor 'd' 'c')
%.y
> (gor 'c' 'd')
%.n
> (gor "foo" "bar")
%.n
> (gor (some 10) `(list @)`[1 2 3 ~])
%.n

Discussion

maps use gor on the key for horizontal ordering and mor for vertical order. maps only look at the keys (the head of the key-value pair elements) for ordering.


+mor

(more) mug order

Computes whether the double-hashes (mug (mug a)) and (mug (mug b)) are in ascending numeric order, producing a flag. If the double-mug hashes are equal, a and b are compared by dor instead.

mug is the the 31-bit nonzero FNV-1a hash algorithm.

Accepts

a is a noun

b is a noun

Produces

A flag.

Source

++  mor
  ~/  %mor
  |=  [a=* b=*]
  ^-  ?
  =+  [c=(mug (mug a)) d=(mug (mug b))]
  ?:  =(c d)
    (dor a b)
  (lth c d)

Examples

    > (mor 'f' 'g')
    %.y

    > [(mug 'f') (mug 'g')]
    [1.661.740.952 1.644.963.335]

    > [(mug (mug 'f')) (mug (mug 'g'))]
    [261.421.509 1.861.258.547]

    > (mor 'a' 'z')
    %.n

    > (mor 43.326 41.106)
    %.n

Discussion

Maps, sets, and queues all use mor to check for vertical ordering. Maps and sets also use gor for horizontal order, but queues use vertical ordering alone.

Since hashing removes correlation, double-mugging with mor removes correlation with single-mugged gor. Vertical order becomes uncorrelated with horizontal order.


Previous2e: Insecure HashingNext2g: Unsigned Powers

Last updated 1 day ago