Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • +con
  • +dis
  • +mix
  • +not
Edit on GitHub
  1. Hoon
  2. Standard Library

2d: Bit Logic

+con

Binary OR

Computes the bitwise logical OR of two atoms, a and b, producing an atom.

Accepts

a is an atom

b is an atom

Produces

An atom.

Source

++  con
  ~/  %con
  |=  [a=@ b=@]
  =+  [c=0 d=0]
  |-  ^-  @
  ?:  ?&(=(0 a) =(0 b))  d
  %=  $
    a   (rsh 0 a)
    b   (rsh 0 b)
    c   +(c)
    d   %+  add  d
          %+  lsh  [0 c]
          ?&  =(0 (end 0 a))
              =(0 (end 0 b))
          ==
  ==

Examples

    > (con 0b0 0b1)
    1

    > (con 0 1)
    1

    > (con 0 0)
    0

    > `@ub`(con 0b1111.0000 0b1.0011)
    0b1111.0011

    > (con 4 4)
    4

    > (con 10.000 234)
    10.234

    > `@ub`534
    0b10.0001.0110

    > `@ub`987
    0b11.1101.1011

    > `@ub`(con 534 987)
    0b11.1101.1111

    > (con 534 987)
    991

Discussion

con performs the bitwise operation OR, a concept that's general to computing. It compares each bit of its first sample to the corresponding bit of its second sample. If either bit is 1, the corresponding product bit is set to 1. Otherwise, the corresponding product bit is set to 0.

Take the example of (con 8 12). It's easy to see how this operation works when its samples and its product are stacked.

    0b1000     ::  8  (sample)
    0b1100     ::  12 (sample)
    0b1100     ::  12 (product)

Note that the names con (conjunction) for OR and dis (disjunction) for AND are given to opposite operators in Hoon when compared to other computing contexts. That's because 0 is true in Hoon and 1 is false. Outside of Hoon, where 0 is false and 1 is true, bitwise OR is the logical disjunction and bitwise AND is the logical conjunction.


+dis

Binary AND

Computes the bitwise logical AND of two atoms, a and b, producing an atom.

Accepts

a is an atom.

b is an atom.

Produces

An atom.

Source

++  dis
  ~/  %dis
  |=  [a=@ b=@]
  =|  [c=@ d=@]
  |-  ^-  @
  ?:  ?|(=(0 a) =(0 b))  d
  %=  $
    a   (rsh 0 a)
    b   (rsh 0 b)
    c   +(c)
    d   %+  add  d
          %+  lsh  [0 c]
          ?|  =(0 (end 0 a))
              =(0 (end 0 b))
          ==
  ==

Examples

    > `@ub`9
    0b1001

    > `@ub`5
    0b101

    > `@ub`(dis 9 5)
    0b1

    > (dis 9 5)
    1

    > `@ub`534
    0b10.0001.0110

    > `@ub`987
    0b11.1101.1011

    > `@ub`(dis 534 987)
    0b10.0001.0010

    > (dis 534 987)
    530

Discussion

dis performs the bitwise AND, an operation general to computing. It compares each bit of its first sample to the corresponding bit of its second sample. If both bits are 1, the corresponding product bit is set to 1. Otherwise, the corresponding product bit is set to 0.

Take the example of (dis 8 12). It's easy to see how this operation works when its samples and its product are stacked.

    0b1000     ::  8  (sample)
    0b1100     ::  12 (sample)
    0b1000     ::  8  (product)

Note that the names dis (disjunction) for AND and con (conjuction) for OR are given to opposite operators in Hoon when compared to other computing contexts. That's because 0 is true in Hoon and 1 is false. Outside of Hoon, where 0 is false and 1 is true, bitwise OR is the logical disjunction and bitwise AND is the logical conjunction.


+mix

Binary XOR

Produces the bitwise logical XOR of two atoms, a and b, producing an atom.

Accepts

a is an atom

b is an atom

Produces

An atom.

Source

++  mix
  ~/  %mix
  |=  [a=@ b=@]
  ^-  @
  =+  [c=0 d=0]
  |-
  ?:  ?&(=(0 a) =(0 b))  d
  %=  $
    a   (rsh 0 a)
    b   (rsh 0 b)
    c   +(c)
    d   (add d (lsh [0 c] =((end 0 a) (end 0 b))))
  ==

Examples

    > `@ub`2
    0b10

    > `@ub`3
    0b11

    > `@ub`(mix 2 3)
    0b1

    > (mix 2 3)
    1

    > `@ub`(mix 2 2)
    0b0

    > (mix 2 2)
    0

    > `@ub`534
    0b10.0001.0110

    > `@ub`987
    0b11.1101.1011

    > `@ub`(mix 534 987)
    0b1.1100.1101

    > (mix 534 987)
    461

Discussion

mix performs the bitwise XOR (exclusive-OR), an operation that's general to computing. compares each bit of its first sample to the corresponding bit of its second sample. If one bit is 0 and the other bit is 1, the corresponding product bit is set to 1. Otherwise, the corresponding product bit is set to 0.

Take the example of (mix 8 12). It's easy to see how this operation works when its samples and its product are stacked.

    0b1000     ::  8  (sample)
    0b1100     ::  12 (sample)
     0b100     ::  4 (product)

+not

Binary NOT

Computes the bitwise logical NOT of the bottom b blocks of size a of c.

Accepts

a is a block size (see bloq).

b is an atom.

c is an atom.

Produces

An atom.

Source

++  not  |=  [a=bloq b=@ c=@]
  (mix c (dec (bex (mul b (bex a)))))

Examples

    > `@ub`24
    0b1.1000

    > (not 0 5 24)
    7

    > `@ub`7
    0b111

    > (not 2 5 24)
    1.048.551

    > (not 2 5 1.048.551)
    24

    > (not 1 1 (not 1 1 10))
    10

Discussion

In computing in general, the bitwise operation NOT simply turns a binary number's 0s into 1s, and vice versa.

In Hoon, we ask for a little more information to use not, because binary numbers have a number of implicit leading zeroes differently depending on on their block size. Decimal 7, for example, is 0b111 in binary, and has one implicit zero in the context of a block of size 2, which has a bitwidth of 4. Let's try not on 7 with a single block of size 2.

    > `@ub`(not 2 1 0b111)
    0b1000

    > `@u`0b1000
    8

This happened because 0b111 is considered as 0b0111 by the not operator when dealing with a single block of size 2. The NOT of 7, then, is 0b1000, or 8 in decimal.

When we pass not a single block of size 3, there is a bitwidth of 8 to fill with binary information. So the remaining leading digits of 0b111 are, again, treated as 0.

    > `@ub`(not 3 1 0b111)
    0b1111.1000

    > `@u`0b1111.1000
    248

This works when going to a smaller block size, too.

    > `@ub`(not 1 1 0b1011)
    0b100

    > `@u`0b100
    4

What's happening here may not be readily apparent. But we're only flipping the last block of size 1 (bitwidth 2) of the binary 0b111. That is, we leave the "0b1" piece just the same and manipulate the "11" that the number ends with.


Previous2c: Bit ArithmeticNext2e: Insecure Hashing

Last updated 1 day ago