Urbit Docs
  • What is Urbit?
  • Get on Urbit
  • Build on Urbit
    • Contents
    • Environment Setup
    • Hoon School
      • 1. Hoon Syntax
      • 2. Azimuth (Urbit ID)
      • 3. Gates (Functions)
      • 4. Molds (Types)
      • 5. Cores
      • 6. Trees and Addressing
      • 7. Libraries
      • 8. Testing Code
      • 9. Text Processing I
      • 10. Cores and Doors
      • 11. Data Structures
      • 12. Type Checking
      • 13. Conditional Logic
      • 14. Subject-Oriented Programming
      • 15. Text Processing II
      • 16. Functional Programming
      • 17. Text Processing III
      • 18. Generic and Variant Cores
      • 19. Mathematics
    • App School I
      • 1. Arvo
      • 2. The Agent Core
      • 3. Imports and Aliases
      • 4. Lifecycle
      • 5. Cards
      • 6. Pokes
      • 7. Structures and Marks
      • 8. Subscriptions
      • 9. Vanes
      • 10. Scries
      • 11. Failure
      • 12. Next Steps
      • Appendix: Types
    • App School II (Full-Stack)
      • 1. Types
      • 2. Agent
      • 3. JSON
      • 4. Marks
      • 5. Eyre
      • 6. React app setup
      • 7. React app logic
      • 8. Desk and glob
      • 9. Summary
    • Core Academy
      • 1. Evaluating Nock
      • 2. Building Hoon
      • 3. The Core Stack
      • 4. Arvo I: The Main Sequence
      • 5. Arvo II: The Boot Sequence
      • 6. Vere I: u3 and the Serf
      • 7. Vere II: The Loom
      • 8. Vanes I: Behn, Dill, Kahn, Lick
      • 9. Vanes II: Ames
      • 10. Vanes III: Eyre, Iris
      • 11. Vanes IV: Clay
      • 12. Vanes V: Gall and Userspace
      • 13. Vanes VI: Khan, Lick
      • 14. Vanes VII: Jael, Azimuth
    • Runtime
      • U3
      • Conn.c Guide
      • How to Write a Jet
      • API Overview by Prefix
      • C in Urbit
      • Cryptography
      • Land of Nouns
    • Tools
      • Useful Links
      • JS Libraries
        • HTTP API
      • Docs App
        • File Format
        • Index File
        • Suggested Structure
    • Userspace
      • Command-Line App Tutorial
      • Remote Scry
      • Unit Tests
      • Software Distribution
        • Software Distribution Guide
        • Docket File
        • Glob
      • Examples
        • Building a CLI App
        • Debugging Wrapper
        • Host a Website
        • Serving a JS Game
        • Ship Monitoring
        • Styled Text
  • Urbit ID
    • What is Urbit ID?
    • Azimuth Data Flow
    • Life and Rift
    • Urbit HD Wallet
    • Advanced Azimuth Tools
    • Custom Roller Tutorial
    • Azimuth.eth Reference
    • Ecliptic.eth Reference
    • Layer 2
      • L2 Actions
      • L2 Rollers
      • L2 Roller HTTP RPC-API
      • L2 Transaction Format
  • Urbit OS
    • What is Urbit OS?
    • Base
      • Hood
      • Threads
        • Basics Tutorial
          • Bind
          • Fundamentals
          • Input
          • Output
          • Summary
        • HTTP API Guide
        • Spider API Reference
        • Strandio Reference
        • Examples
          • Child Thread
          • Fetch JSON
          • Gall
            • Poke Thread
            • Start Thread
            • Stop Thread
            • Take Facts
            • Take Result
          • Main-loop
          • Poke Agent
          • Scry
          • Take Fact
    • Kernel
      • Arvo
        • Cryptography
        • Move Trace
        • Scries
        • Subscriptions
      • Ames
        • Ames API Reference
        • Ames Cryptography
        • Ames Data Types
        • Ames Scry Reference
      • Behn
        • Behn API Reference
        • Behn Examples
        • Behn Scry Reference
      • Clay
        • Clay API Reference
        • Clay Architecture
        • Clay Data Types
        • Clay Examples
        • Clay Scry Reference
        • Filesystem Hierarchy
        • Marks
          • Mark Examples
          • Using Marks
          • Writing Marks
        • Using Clay
      • Dill
        • Dill API Reference
        • Dill Data Types
        • Dill Scry Reference
      • Eyre
        • EAuth
        • Eyre Data Types
        • Eyre External API
        • Eyre Internal API
        • Eyre Scry Reference
        • Low-Level Eyre Guide
        • Noun channels
      • Gall
        • Gall API Reference
        • Gall Data Types
        • Gall Scry Reference
      • Iris
        • Iris API Reference
        • Iris Data Types
        • Iris Example
      • Jael
        • Jael API Reference
        • Jael Data Types
        • Jael Examples
        • Jael Scry Reference
      • Khan
        • Khan API Reference
        • Khan Data Types
        • Khan Example
      • Lick
        • Lick API Reference
        • Lick Guide
        • Lick Examples
        • Lick Scry Reference
  • Hoon
    • Why Hoon?
    • Advanced Types
    • Arvo
    • Auras
    • Basic Types
    • Cheat Sheet
    • Cryptography
    • Examples
      • ABC Blocks
      • Competitive Programming
      • Emirp
      • Gleichniszahlenreihe
      • Islands
      • Luhn Number
      • Minimum Path Sum
      • Phone Letters
      • Restore IP
      • Rhonda Numbers
      • Roman Numerals
      • Solitaire Cipher
      • Water Towers
    • Generators
    • Hoon Errors
    • Hoon Style Guide
    • Implementing an Aura
    • Irregular forms
    • JSON
    • Limbs and wings
      • Limbs
      • Wings
    • Mips (Maps of Maps)
    • Parsing Text
    • Runes
      • | bar · Cores
      • $ buc · Structures
      • % cen · Calls
      • : col · Cells
      • . dot · Nock
      • / fas · Imports
      • ^ ket · Casts
      • + lus · Arms
      • ; mic · Make
      • ~ sig · Hints
      • = tis · Subject
      • ? wut · Conditionals
      • ! zap · Wild
      • Constants (Atoms and Strings)
      • --, == · Terminators
    • Sail (HTML)
    • Serialization
    • Sets
    • Standard Library
      • 1a: Basic Arithmetic
      • 1b: Tree Addressing
      • 1c: Molds and Mold-Builders
      • 2a: Unit Logic
      • 2b: List Logic
      • 2c: Bit Arithmetic
      • 2d: Bit Logic
      • 2e: Insecure Hashing
      • 2f: Noun Ordering
      • 2g: Unsigned Powers
      • 2h: Set Logic
      • 2i: Map Logic
      • 2j: Jar and Jug Logic
      • 2k: Queue Logic
      • 2l: Container from Container
      • 2m: Container from Noun
      • 2n: Functional Hacks
      • 2o: Normalizing Containers
      • 2p: Serialization
      • 2q: Molds and Mold-Builders
      • 3a: Modular and Signed Ints
      • 3b: Floating Point
      • 3c: Urbit Time
      • 3d: SHA Hash Family
      • 3e: AES encryption (Removed)
      • 3f: Scrambling
      • 3g: Molds and Mold-Builders
      • 4a: Exotic Bases
      • 4b: Text Processing
      • 4c: Tank Printer
      • 4d: Parsing (Tracing)
      • 4e: Parsing (Combinators)
      • 4f: Parsing (Rule-Builders)
      • 4g: Parsing (Outside Caller)
      • 4h: Parsing (ASCII Glyphs)
      • 4i: Parsing (Useful Idioms)
      • 4j: Parsing (Bases and Base Digits)
      • 4k: Atom Printing
      • 4l: Atom Parsing
      • 4m: Formatting Functions
      • 4n: Virtualization
      • 4o: Molds
      • 5a: Compiler Utilities
      • 5b: Macro Expansion
      • 5c: Compiler Backend & Prettyprinter
      • 5d: Parser
      • 5e: Molds and mold builders
      • 5f: Profiling support
    • Strings
    • The Engine Pattern
    • Udon (Markdown-esque)
    • Vases
    • Zuse
      • 2d(1-5): To JSON, Wains
      • 2d(6): From JSON
      • 2d(7): From JSON (unit)
      • 2e(2-3): Print & Parse JSON
      • 2m: Ordered Maps
  • Nock
    • What is Nock?
    • Decrement
    • Definition
    • Fast Hints and Jets
    • Implementations
    • Specification
  • User Manual
    • Contents
    • Running Urbit
      • Cloud Hosting
      • Home Servers
      • Runtime Reference
      • Self-hosting S3 Storage with MinIO
    • Urbit ID
      • Bridge Troubleshooting
      • Creating an Invite Pool
      • Get an Urbit ID
      • Guide to Factory Resets
      • HD Wallet (Master Ticket)
      • Layer 2 for planets
      • Layer 2 for stars
      • Proxies
      • Using Bridge
    • Urbit OS
      • Basics
      • Configuring S3 Storage
      • Dojo Tools
      • Filesystem
      • Shell
      • Ship Troubleshooting
      • Star and Galaxy Operations
      • Updates
Powered by GitBook

GitHub

  • Urbit ID
  • Urbit OS
  • Runtime

Resources

  • YouTube
  • Whitepaper
  • Awesome Urbit

Contact

  • X
  • Email
  • Gather
On this page
  • Challenge: Reversible Primes
  • Solutions
  • Solution #1
  • Solution #2
  • Unit Tests
Edit on GitHub
  1. Hoon
  2. Examples

Emirp

Challenge: Reversible Primes

A prime number is a number that is only divisible by 1 and itself, for example, 7. An emirp is a prime number that results in a different prime when its decimal digits are reversed. For example, 107 and 701 are a pair of emirps, and 3,049 and 9,403.

Palindromic numbers are not emirps. 101 is a prime and its reverse is itself -- it is not an emirp.

Your task for this challenge is write a generator that will add up all the first n emirps. To be precise, you should write a generator emirp which takes a @ud number n as an input, and returns a @ud number which is the sum of the first n emirps.

Example usage:

> +emirp 10
638

The first 10 emirps are 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, and their sum is 638.

Solutions

These solutions were submitted by the Urbit community as part of a competition in ~2024.3. They are made available under the MIT License and CC0. We ask you to acknowledge authorship should you utilize these elsewhere.

Solution #1

By ~nodmel-todsyr. A very fast and efficient solution.

::  emirp.hoon
::  Finds a sum of first n emirp numbers
|^
|=  [n=@ud]
=/  i  0
=/  sum  0
=/  number  13
=|  emirps=(set @ud)
|-
?:  =(i n)
  sum
=^  x=@ud  emirps  (find-emirp number emirps)
%=  $
  i  +(i)
  sum  (add sum x)
  :: iterating only over 6k +- 1 numbers
  number  (add ?:(=((mod x 6) 1) 4 2) x)
==
::  Finds a smallest emirp which is greater than or equal to x.
::  Adds flipped emirp to the set of emirps
::  If emirp is in the set, returns it immediately
::
++  find-emirp
  |=  [x=@ud emirps=(set @ud)]
  ^-  [@ud (set @ud)]
  =/  flipped  (flip x)
  ?:  (~(has in emirps) x)
    [x emirps]
  ?:  &(!=(x flipped) (is-prime x) (is-prime flipped))
    [x (~(put in emirps) flipped)]
  $(x (add ?:(=((mod x 6) 1) 4 2) x))
::  Checks if x is a prime. 
::
++  is-prime
  |=  [x=@ud]
  ^-  ?
  ?:  (lte x 3)
    (gth x 1)
  ?:  |(=((mod x 2) 0) =((mod x 3) 0))
    %.n
  =/  limit  p:(sqt x)
  =/  j  5
  |-
  ?:  (gth j limit)
    %.y
  ?:  |(=((mod x j) 0) =((mod x (add 2 j)) 0))
    %.n
  $(j (add j 6))
::  Flips a number.
::
++  flip
  |=  [number=@ud]
  ^-  @ud
  =/  m  0
  =/  rip  (curr div 10)
  =/  last  (curr mod 10)
  |-
  ?:  =(number 0)
    m
  %=  $
    number  (rip number)
    m  (add (mul 10 m) (last number))
  ==
--

Solution #2

By ~ramteb-tinmut. Well-commented, easy to read, and fast.

::  emirp.hoon
:: Return the sum of the first n emirp numbers
::
|=  target=@ud
=/  emirp-candidate  13  :: starting at the first emirp makes sense
=|  emirps=(list @ud)
=<
sieve
|%
++  sieve
  :: When the target is reached, sum the list of emirps
  ::
  ?:  =(target (lent emirps))
    |-
    ?~  emirps
      0
    (add i.emirps $(emirps t.emirps))
  :: Whilst below target, recurse on is-emirp after incrementing
  :: 
  %=  sieve
    emirps  (is-emirp emirp-candidate)
    emirp-candidate  (add emirp-candidate 1)
  ==
++  is-emirp
  |=  candidate=@ud
  =/  reversed  (reverse-ud candidate)
  :: Check if candidate number is a palindrome
  ::
  ?:  !=(reversed candidate)
    :: Is it also a prime?
    ::
    ?:  (is-prime [candidate (sqt candidate)])
      :: Check if the reverse is also a prime:
      ::
      ?:  (is-prime [reversed (sqt reversed)])
        :: Success! - store the emirp
        ::
        (into emirps 1 candidate)
      :: The reverse is not a prime:
      ::
      emirps
    :: Not prime
    ::
    emirps
  :: Palindrome & invalid
  ::  
  emirps
++  is-prime
  =/  divisor  2
  |=  [candidate=@ud root=[@ @]]  
  
  :: Fastest check first - has the divisor reached our input candidate? 
  ::
  ?:  =(candidate divisor)
    %.y
  :: Ensure non-zero modulo
  ::
  ?:  =((mod candidate divisor) 0)
    %.n
  :: If not a prime, then number must have a divisor less than or equal to its square root. There's an edge case if the square root is not a whole number, in which case we need to round up:
  ::
  ?:  &(=(+3.root 0) (gth divisor +2.root))
    %.y
  ?:  (gth divisor (add 1 +2.root))
    %.y
  :: Increment divisor and repeat
  ::
  %=  $
    divisor  (add divisor 1)
  ==

++  reverse-ud
  |=  number=@ud
  ^-  @ud
  =/  reversed  0
  :: Return reversed @ud when number reaches zero
  ::
  |-
    ?:  =(0 number)  
      reversed
    :: Otherwise loop until all digits are swapped:
    ::
    =.  reversed  (add (mul 10 reversed) (mod number 10))
    $(number (div number 10))  
--

Unit Tests

Following a principle of test-driven development, the unit tests below allow us to check for expected behavior. To run the tests yourself, follow the instructions in the Unit Tests section.

/+  *test
/=  emirp  /gen/emirp
|%
++  test-01
  %+  expect-eq
    !>  `@ud`13
    !>  (emirp 1)
++  test-02
  %+  expect-eq
    !>  `@ud`30
    !>  (emirp 2)
++  test-03
  %+  expect-eq
    !>  `@ud`169
    !>  (emirp 5)
++  test-04
  %+  expect-eq
    !>  `@ud`638
    !>  (emirp 10)
++  test-05
  %+  expect-eq
    !>  `@ud`6.857
    !>  (emirp 25)
++  test-06
  %+  expect-eq
    !>  `@ud`32.090
    !>  (emirp 50)
++  test-07
  %+  expect-eq
    !>  `@ud`115.370
    !>  (emirp 100)
++  test-08
  %+  expect-eq
    !>  `@ud`4.509.726
    !>  (emirp 500)
--
PreviousCompetitive ProgrammingNextGleichniszahlenreihe

Last updated 1 day ago